It’s not unusual to hear people describe themselves as emotionally 'colder'

It’s not unusual to hear people who have undergone sympathectomies describe themselves as feeling emotionally “colder” than before. Among psychologists and neurologists alike there is concern, but no evidence, that the procedure limits alertness and arousal as well as fear, and might affect memory, empathy and mental performance. Professor Ronald Rapee, the director of the Centre of Emotional Health at Sydney’s Macquarie University, says he’s counselled several people who complain of feeling “robot-like” in the long-term wake of the operation. “They’re happy they no longer blush, but they miss the highs and lows they used to feel.”
(John van Tiggelen, Good Weekend Magazine, The Age and the Sydney Morning Herald, 10th March 2012)
https://archive.today/uURge

Tuesday, 9 September 2014

Regional cerebral blood flow correlates with heart period and high- frequency heart period variability

 2004 Jul;41(4):521-30.

Regional cerebral blood flow correlates with heart period and high-frequency heart period variability during working-memory tasks: Implications for the cortical and subcortical regulation of cardiac autonomic activity.

Erratum in

  • Psychophysiology. 2004 Sep;41(5):807.

Abstract

The aim of the present study was to characterize the functional relationships between behaviorally evoked regional brain activation and cardiac autonomic activity in humans. Concurrent estimates of regional cerebral blood flow (rCBF; obtained by positron emission tomography), heart period, and high-frequency heart period variability (HF-HPV; an indicator of cardiac parasympathetic activity) were examined in 93 adults (aged 50-70 years) who performed a series of increasingly difficult working-memory tasks. Increased task difficulty resulted in decreased heart period (indicating cardioacceleration) and decreased HF-HPV (indicating decreased cardiac parasympathetic activity). Task-induced decreases in heart period and HF-HPV were associated with concurrent increases and decreases in rCBF to cortical and subcortical brain regions that are speculated to regulate cardiac autonomic activity during behavioral processes: the medial-prefrontal, insular, and anterior cingulate cortices, the amygdala-hippocampal complex, and the cerebellum. These findings replicate and extend a small number of functional neuroimaging studies that suggest an important role for both cortical and subcortical brain systems in human cardiac autonomic regulation.
http://www.ncbi.nlm.nih.gov/pubmed/15189475

No comments:

Post a Comment